Power, Leadership, and Self-Regulation

Michael R. Ent, Roy F. Baumeister*, and Andrew J. Vonasch
Florida State University

Abstract

Power has been linked to both self-regulatory success and failure. Power typically aids self-regulation of task performance by making people motivated and goal-oriented. However, because people’s self-regulatory resources are limited, as powerful people exert effort on their focal tasks, they may fail to self-regulate in other domains. This type of goal myopia may lead to detriments in impulse control. Wielding power, by making decisions and leading subordinates, can deplete people’s self-regulatory resources, making subsequent acts of self-control more difficult.

In May 2011, U.S. Congressman Anthony Weiner sent a lewd picture of himself via a public Twitter account to a woman follower. The scandal that followed was entirely predictable, and Weiner’s promising political career came to a screeching halt. Weiner was hardly unique as a leader whose political career was damaged or ended by sex scandals. Arnold Schwarzenegger, Bill Clinton, John Edwards, Mark Sanford, Newt Gingrich, and Eliot Spitzer are just some recent cases of powerful men who have been caught with their pants down. Why are powerful men, who are so successful in controlling their work lives, so prone to catastrophic lapses in self-control? In a recent interview, Gingrich reflected “There’s no question at times in my life, partially driven by how passionately I felt about this country, that I worked too hard and things happened in my life that were not appropriate” (Brody, 2011).

Yet power does not always diminish self-regulation, as shown by many historical counterexamples. As crown prince, the future Frederick II of Prussia was by all accounts a gentle, sensitive boy who liked flute music and poetry and loathed the court, language, and militarism of Prussia, even trying during adolescence to run away to France. Yet Frederick evinced an astonishing change of character upon ascending to the throne. He extended wise and far-reaching reforms to benefit even the poorest citizens of his country, and he spent much of his reign managing a series of brilliant military campaigns against the combined great powers of Europe, who far outnumbered him. His iron resolve held his army and his country together, earning him the sobriquet “the Great” (Fraser, 2002).

This article reviews the widely varying effects of power and leadership on self-regulation. The seemingly contradictory effects – from immoral self-indulgence to heroic, self-sacrificing performance – are both real. Quite possibly Gingrich’s seemingly self-serving characterization is correct: Power may lead people to work so hard to perform their focal tasks that they deplete their self-regulatory resources and fail to self-regulate adequately in their personal lives.

In this article, we review findings about power, leadership, and self-regulation. Because the effects of power may differ between the self-regulation of task performance and impulse control, we shall discuss these separately.
Definitions

Power

Power is the capacity to affect others by providing or withholding valued resources or administering punishments (Anderson & Berdahl, 2002; French & Raven, 1959; Keltner, Gruenfeld, & Anderson, 2003). Thus, our definition of power focuses on the interpersonal nature of power (i.e., controlling others), whereas some definitions focus on a person’s ability to act with agency (Overbeck & Park, 2001). Power is distinct from related concepts such as status, leadership, dominance, and authority. These may contribute to power, but power is essentially the control over other people and over what happens to them (Anderson & Berdahl, 2002).

Our focus is on power, but in many studies, power has been operationalized by assigning some participants to leadership roles. Power and leadership likewise overlap substantially in roles and organizations outside the laboratory. Leadership involves encouraging other people to temporarily curb their personal concerns and engage in collective, goal-oriented action (Hogan, Curphy, & Hogan, 1994). Control over valued resources and punishments is often necessary for people to lead effectively, so groups are often willing to give this type of control to their leaders. Therefore, leaders typically have power in the sense of control over other people.

Self-regulation

We define self-control and self-regulation jointly as the capacity for altering one’s responses to make them consistent with social values and one’s long-term goals (e.g., Baumeister, Vohs, & Tice, 2007). Self-regulation typically involves exerting control over thoughts, emotions, impulses or desires, and task performance. Our review of the literature was unable to find studies dealing with how power influences emotion regulation or thought control, so this review focuses on the other two dimensions, task performance and impulse control. Self-regulation of task performance is typically a matter of maximizing performance for optimal results. This may arise through effective management of time and effort, avoiding distractions, persevering in the face of failure or obstacles, trading off speed versus accuracy, and the like. Meanwhile, impulse control typically involves restraining oneself from enacting a desire or impulse, usually because enacting it would conflict with other goals, especially long-term ones or high-level (e.g., moral) ones.

Much work on self-regulation has suggested that it operates on the basis of a limited energy resource, akin to strength or energy and to the folk notion of willpower (Baumeister, Bratslavsky, Muraven, & Tice, 1998; Baumeister & Tierney, 2011; Hagger, Wood, Stiff, & Chatzisarantis, 2010). The core point is that people have a limited supply of energy, so that after exerting self-control, the person’s available stock of energy is temporarily reduced (a state dubbed ego depletion). The same resource is used not only for all different acts of self-control but also for making choices and decisions, and taking initiative, (Vohs, Baumeister, Pocheptsova, & Dhar, 2011; Vohs et al., 2008). Because the same resource is used for all acts of self-control, depleting the resource impairs the self’s ability to perform any control task, regardless of how the resource came to be depleted. Thus, using the resource in order to complete self-control task A impairs one’s ability to complete self-control task B, even if the two tasks are different. The use of this resource in self-control and decision making has been linked to glucose, a chemical in the bloodstream that carries energy all around the body and in particular furnishes fuel for brain
activity (Gailliot et al., 2007; Masicampo & Baumeister, 2008; but see Kurzban, 2010; Molden et al., forthcoming).

Obviously, people do not magically acquire an increase in their supplies of physiological energy simply by entering a leadership role. Leaders must contend with the same limits on their willpower as other people. But leaders may also experience increased demands on their willpower, especially insofar as they have more decisions to make and more expectations to meet for exhibiting active initiative instead of passivity.

There is some evidence that the limited resource associated with self-regulation is related to limited information processing capabilities, especially working memory. Working memory is the capacity to store and manipulate goal–relevant information despite the presence of competing goals and distractions (Schmeichel, Volokhov, & Demaree, 2008; Smith & Jonides, 1999). Schmeichel et al. (2008) found that people higher in working memory capacity were more successful at regulating their emotions compared to people lower in working memory capacity. However, self-regulation is theoretically distinct from working memory. Working memory is primarily focused on manipulating information, and self-regulation is primarily focused on changing one’s behavior using that information. Thus, even if one has used one’s working memory and other cognitive abilities to determine the best course of action, one must use self-regulatory resources to enact that course of action over alternative inclinations. In other words, effective self-control requires both a plan of action and the willpower to execute the plan.

Conservation and Expenditure of Self-Regulatory Resources

People in power have more responsibility than the average person, and they are often faced with more demands than they can actually handle (Tsui & Ashford, 1994). Therefore, determining how to allocate one’s self-regulatory resources is one of the most important decisions a powerful person must make. In general, people are more likely to expend their self-regulatory resources on tasks that would benefit themselves or others compared to tasks that do not provide incentives (Muraven & Slessareva, 2003). When people are depleted, they tend to conserve their remaining self-regulatory resources for future demands (Muraven, Shmueli, & Burkley, 2006).

Power typically makes people ready and willing to use their self-regulatory resources to perform tasks that they view as important. Persisting on a task in the face of failure requires self-control (Gailliot et al., 2007; Tice, Baumeister, Shmueli, & Muraven, 2007). Guinote (2007c) found that people in a powerful role persisted longer on an unsolvable task, compared to people in a low-power role. Powerful participants also made more attempts to solve the puzzle, indicating that they were quicker than low-power participants to abandon ineffective problem-solving strategies. Smith, Jostmann, Galinsky, and van Dijk (2008) found that participants primed with high (versus low) power performed better on a Stroop task, a widely used measure of self-control performance that requires overriding automatic responses.

Power leads to judicious expenditure of limited self-regulatory resources. DeWall, Baumeister, Mead, and Vohs (2011) found that power promoted effective self-regulation of task performance – but mainly for tasks regarded as suitable for leaders. Leaders performed better than subordinates at baseline and also showed no drop in performance after a mildly depleting task. This suggests that power creates a willingness to exert one’s self-regulatory resources for task performance. Leaders do however seem to appraise tasks so as to select ones worthy of their attention. On tasks deemed suitable for followers, leaders withheld effort (which itself reflects self-regulation in the sense of judicious management.
of resources, such as by delegating low-level tasks to subordinates). This finding is consistent with the Situated Focus Theory of Power (Guinote, 2007a, 2010). According to this theory, power leads people to focus narrowly on their current goals and avoid distractions and unrelated tasks. If powerful people view a task as unimportant, they will be unlikely to exert effort on the task.

Depleted power holders may not have the resources to be selective in how they expend their self-regulatory resources. DeWall et al. (2011) found that depleted power holders tended to skip the appraisal and exert high effort regardless of the nature of the task. Ironically, their performance on unsuitable tasks improved under ego depletion, because they exerted themselves and did not withhold effort. When a subsequent, unexpected self-regulation task was administered, however, depleted leaders showed the largest effects of depletion, presumably because they had depleted themselves severely on the earlier tasks. This suggests that some leaders may experience a vicious circle in which once their self-regulatory strength is depleted, they cease to evaluate tasks for appropriateness and instead try to do everything that confronts them, thereby depleting their resources all the more.

As we shall discuss in the next section, decision making depletes self-regulatory resources (Vohs et al., 2008). Powerful people are usually effective at deciding which tasks are most important and apply their resources toward completing those tasks. Due to a lack of self-regulatory resources, depleted power holders may fail to decide which tasks are important and expend their self-regulatory resources carelessly. If powerful people expend their self-regulatory resources on unimportant tasks, they will have fewer resources available for use on important tasks in the immediate future.

Positions of power may differ in how much they encourage people to exercise self-control. For example, some positions of power are unstable and may require people to self-regulate effectively to maintain power. Similarly, power holders may have differing degrees of accountability to others. Power holders who are unaccountable for their actions may have limited incentive to focus their self-regulatory efforts on goal-related tasks. Stability and accountability in positions of power may moderate the effects of power on self-regulation.

Decision Fatigue

Positions of power tend to require decision making. Within organizations, powerful people are typically the ones who decide how to allocate resources, who should perform which job, and which tasks should take precedence over others. Powerful people are consulted when their subordinates disagree and when unanticipated problems arise. But making many choices comes at a self-regulatory price. Vohs et al. (2008) found that making decisions led to decreased self-control performance on a variety of subsequent tasks. For example, students who made choices about the content of their psychology course quit faster on an unsolvable puzzle compared to students who merely contemplated possible course content. Importantly, making choices was found to deplete self-regulatory resources more than implementing choices made by others. Within organizational hierarchies, people in power are typically responsible for choosing a course of action and delegating responsibility for its implementation to subordinates. Simply having power is probably not depleting, but wielding power by making decisions and determining outcomes is depleting. Thus, having power depletes self-regulatory resources, at least to the extent that such power requires making choices.
The depleting effects of decision-making by powerful persons was shown in a field study of judicial decisions by Danziger, Levav, and Avnaim-Pesso (2011). They showed the parole decisions made by judges became increasingly harsh as the day wore on, presumably because harsh decisions are the default option that became more appealing as the judges’ resources were depleted. Whenever the judges paused to eat (thereby replenishing their willpower), their decisions became more lenient again.

Task Performance and the Effects of Power on Information Processing

Changes in information processing may mediate the mostly beneficial effects of power on self-regulation of task performance. Here we consider some relevant changes, though evidence that definitively links these cognitive changes to performance improvements is still needed.

Goal-focused attention

Power leads to enhanced cognitive processing of goal-relevant information which can facilitate effective self-regulation of task performance. Slabu and Guinote (2010) manipulated power mindsets by having participants write about a time in which they were high or low in power. Then, participants were instructed to imagine working in a restaurant and that they were in charge of ordering the restaurant’s supplies. Participants subsequently engaged in a lexical decision task in which they indicated, as quickly as possible, whether a string of letters was a word or not a word. The words were either related or unrelated to restaurant supplies. Participants in the high-power condition were faster to identify restaurant-related words compared to restaurant-unrelated words, but this difference was not found for participants in the low-power condition. Before a second lexical decision task, all participants simulated ordering supplies for the restaurant. After the goal of ordering the supplies was completed, the high- and low-power participants performed similarly on the lexical decision task. The authors explained that power facilitates the processing of goal-relevant information, but only when the goal is active. Consistent with these results, Guinote (2007b) found that people in a high- (versus low-) power condition were better able to selectively attend to information that was relevant to a focal task. People in the low-power condition tended to process relevant and irrelevant information similarly.

These studies (Guinote, 2007b; Slabu & Guinote, 2010) did not include control conditions, so they did not distinguish whether high power facilitates or low power impairs goal-focused information processing. Smith et al. (2008) found that lacking power leads people to ignore goal-relevant information. The authors used Kane and Engle’s (2003) adaptation of the Stroop task. In the no-congruent condition, the ink color never matched the meaning of the word. In the majority-congruent condition, the ink typically matched the meaning of the word, so only a few trials required participants to inhibit the inclination to read the word. People primed with low-power words performed worse on the majority-congruent Stroop task than people primed with high-power words and people primed with power-irrelevant words. However, participants’ performance on the non-congruent Stroop task did not differ based on the power manipulation. Participants in the majority-congruent condition had to keep focused on the goal of responding only to the ink color; participants in the no-congruent condition were continually reminded of the goal because the ink color and the word meaning never matched. The results of this study suggest that lacking power may cause people to neglect their goals, which may
be detrimental to task performance. Willis, Guinote, and Rodríguez-Bailón (2010) found evidence that the effect of powerlessness on self-regulation depends on the perceived legitimacy of one’s powerlessness. In one study, participants either wrote about a time in which they were powerless for legitimate (i.e. fair) reasons or illegitimate reasons. Consistent with previous research, participants in the legitimately powerless condition persisted less in the face of difficulty compared to participants in a control condition. However, participants in the illegitimately powerless condition persisted to the same degree as participants in the control condition. The authors suggested that illegitimately powerless people may focus more on improving their social position compared to legitimately powerless people.

In addition to facilitating goal-focused attention, power may facilitate the adoption and pursuit of goals. Guinote (2007c) presented people with hypothetical situations and found that people primed with power required less time than control participants to decide what course of action they would take in each of the situations and reported that they would initiate goal-directed action sooner.

Awareness of goals can influence whether leaders disdain a task as unsuitable for them (as noted above, from DeWall et al., 2011) or perform well at it. Powerful persons typically do not exert themselves to understand other people’s perspectives. Galinsky, Magee, Inesi, and Gruenfeld (2006) found that participants primed with high power were less accurate than others at discerning people’s emotions. van Kleef et al. (2008) showed that people with strong sense of power reported less compassion and distress in response to other people’s suffering. But when pursuing an important goal requires perspective taking, powerful people can do so effectively. Thus, when task demands required inferring other people’s thoughts and feelings, participants primed with high power outperformed those primed with low power (Schmid Mast, Jonas, & Hall, 2009). Thus, leaders self-regulate their attention and cognitive efforts in service of effective performance.

Approach motivation

Successful self-regulation of task performance requires people to take action and approach the task at hand. Power may lead people to adopt an approach orientation toward task performance. According to the Approach/Inhibition Theory of power (Keltner et al., 2003), people high in power have more access to rewards such as money and praise and are less susceptible to interpersonal threats compared to people with low power. The behavioral approach system (BAS) primarily responds to rewards and the behavioral inhibition system (BIS) primarily responds to threats (Carver & White, 1994; Higgins, 1997). Therefore, the Approach/Inhibition Theory of power predicts that people high in power will display increased approach system activation and decreased inhibition system activation.

There is robust empirical evidence that power increases approach-system activation. Maner, Kaschak, and Jones (2010) found that priming the concept of power prepared people to initiate approach movements. Galinsky, Gruenfeld, and Magee (2003) asked some participants to write about a time in which they had control over others (high-power condition) and other participants to write about a time in which someone else had control over them (low-power condition). People in the high-power condition were more likely to take action by turning off an annoying fan compared to people in the low-power condition. Smith and Bargh (2008) used a similar power manipulation, but also included a control condition in which participants wrote about what they did the previous day. The authors found that participants in the high-power condition showed
greater approach system activation and approach-related behavior (choosing to sit closer to another student) than participants in the other two conditions. In three experiments, participants in the low-power condition did not differ from participants in the control condition. Smith and Bargh (2008) indicated that high power promotes approach-system activation, but they found no evidence that low power promotes inhibition-system activation. Smith et al. (2008) found high power people did well on the Stroop task, which requires the use of the inhibition system. Overall, the evidence for power’s increase of the BAS is stronger than the evidence for power’s decrease of the BIS. Further research is necessary to disentangle these effects.

The link between power and approach orientation has also been found outside of the laboratory. Lammers, Stoker, and Stapel (2010) found that power was positively correlated with increased approach orientation in a sample of Dutch employees. The authors found this relationship when assessing people’s subjective sense of power and people’s actual power (e.g. number of subordinates). Consistent with the Approach/Inhibition Theory of power, the relationship between power and approach motivation was mediated by access to resources.

If power leads people to approach their goals and show initiative rather than passivity, then power may aid self-regulation of task performance. To our knowledge, approach motivation has not been tested as a possible mediator of the relationship between power and self-regulation of task performance. Future research could address this possibility.

Abstract thought

Exercising self-control often means sacrificing short-term rewards in the service of long-term goals (Baumeister & Tierney, 2011). Abstract, high-level information processing can facilitate effective self-regulation of task performance because this style of thinking allows people to see the “big picture” and to focus on their overarching goals rather than peripheral concerns and distractions (Fujita, Trope, Liberman, & Levin-Sagi, 2006). Powerful people tend to adopt an abstract rather than a concrete construal style. Smith and Trope (2006) found that people primed with high power preferred more inclusive categories compared to people primed with low power. For example, the category “vehicle” could include typical exemplars such as “car” and atypical exemplars such as “tractor.” People primed with high power are more likely than people primed with low power to include an atypical exemplar such as “tractor” in the category of “vehicle.” In addition, a high-power prime led people to prefer high- (versus low-) level action identifications. For example, the act of reading could be described as “following lines of print” (low-level identification) or “gaining knowledge” (high-level identification). People primed with high power favored abstract, high-level identifications more than people primed with low power. Magee, Milliken, and Lurie (2010) coded people’s expressed reactions to the 9/11 terrorist attacks and found that people rated by others as possessing more power were more likely to discuss the attacks in abstract terms compared to those lower in power. Lammers and Stapel (2009) found that, when making moral judgments, individuals who had been induced to feel powerful preferred abstract, rule-based arguments more and outcome-based arguments less than people induced to feel powerless. Guinote (2007b) demonstrated how power affects information processing differently depending on the nature of the task. Specifically, powerful people were able to switch from a detail-oriented mindset to more abstract, global information processing based on the demands of the task at hand. People lower in power tended to maintain a detail-oriented mindset regardless of the task demands.
If abstract information processing can facilitate “big picture” thinking in which long-term goals are continually salient, and powerful people engage in more abstract information processing, then possessing power may lead to superior self-regulation of task performance (Smith & Trope, 2006). To our knowledge, abstract thought has not been tested as a possible mediator of the relationship between power and self-regulation.

Impulse Control

Impulse control is a struggle between the strength of one’s impulse and one’s ability to override the impulse (e.g. Schmeichel, Harmon-Jones, & Harmon-Jones, 2010). The effects of power, including those previously discussed, may affect the strength of people’s impulses and people’s ability or willingness to override their impulses.

Because self-regulatory success is partially determined by the strength of one’s impulses, factors that increase impulse strength can lead to self-regulatory failure. Power may lead people to focus on their impulses which may increase impulse strength. Powerful people tend to focus their attention on goals (Guinote, 2007b; Slabu & Guinote, 2010), and hedonic satisfaction of impulses can be a goal. Attending to, rather than ignoring, temptations makes impulse control more difficult (Mischel & Mischel, 1983; Wertenbroch, 1998). Impulse control may therefore suffer among powerful people who focus on their desires and temptations. Guinote (2010) found that people assigned to a high-power role ate more chocolate during a taste test than people assigned to a low-power role. Guinote explained that powerful people display focused behavior. If they want chocolate, they will eat chocolate; if they want to finish a manuscript, they will finish a manuscript. If powerful people are focused on temptations, controlling the impulse to act on their temptations may be difficult.

For some people, having power may bring sexual impulses to mind. Bargh, Raymond, Pryor, and Strack (1995) found evidence that some men automatically associate power and sex. For example, power primes increased accessibility of sex-related words and caused some men to rate female confederates as more attractive, compared to control participants. This may contribute to sexual harassment of female subordinates. Lammers, Stoker, Jordan, Pollmann, and Stapel (2011) found that participants’ self-reported power within their workplace hierarchies was positively related to both intentions to engage in sexual infidelity and actual infidelity. This relationship was the same for both men and women.

Powerful people may not only think more about sex, they may also fail to appreciate possible negative consequences associated with acting on sexual desires. Anderson and Galinsky (2006) found that people induced to feel powerful perceived less risk associated with engaging in unprotected sex, and consequently reported increased willingness to have unprotected sex, compared to people in a low-power condition. This finding is consistent with other evidence that power makes people attend less to possible threats. Anderson and Berdahl (2002) found that people high (versus low) in social dominance orientation and people who were randomly assigned control (versus no control) over resources were less likely to perceive cues related to social threat. Even if powerful people acknowledge potential threats, they are likely to downplay the significance of potential losses. For example, students primed with high power reported less desire to avoid getting a poor exam grade compared to students primed with low power and students in a control condition (Inesi, 2010). If powerful people do not appreciate the potential risk associated with their impulsive behaviors, they may be unlikely to exercise impulse control. This apparent insensitivity to risk may be one of the most important and far-reaching tendencies of powerful people to emerge from recent studies, and it deserves further research.
Despite its beneficial effects for task performance, a power-induced approach orientation may weaken impulse control. An approach orientation can lead people to approach important tasks but also temptations. For example, Harmon-Jones and Peterson (2008) found that people high (versus low) in approach orientation acted more aggressively in response to an insulting message. An insulting message can tempt people to aggress, so impulse control is necessary to thwart aggression. The results of this study suggest that an approach orientation increases the likelihood that people will act on aggressive impulses. Because power increases approach orientation, powerful people may have difficulty controlling their impulses.

The abstract construal style adopted by powerful people may aid impulse control as well as self-regulation of task performance. For both impulse control and task performance, successful self-regulation requires one to focus on high-level goals rather than short-term concerns and distractions. Fujita et al. (2006) found that participants manipulated to think abstractly displayed less preference for immediate rather than delayed rewards compared to participants manipulated to think in low-level, concrete terms. The ability to forgo immediate rewards to pursue high-level goals is essential for successful impulse control.

Does Self-Regulation Affect Power?

Although this paper has focused on the effect of social power on self-regulation, consideration of how self-regulation could influence social power may be a useful complement. Individuals with higher dispositional self-control tend to get better grades, possess better interpersonal skills (Tangney, Baumeister, & Boone, 2004), make more money, and are less likely to end up in prison (Moffitt et al., 2011). Because effective self-regulation is associated with competence in multiple domains, high self-control may facilitate the acquisition of power. On the other hand, a lack of self-regulation could also aid one’s ability to attain social power. When a group faces a problem, people tend to follow the person who acts first (Van Vugt, Hogan, & Kaiser, 2008). Therefore, people who are quick to act are likely to gain social power by obtaining a leadership role. Having decreased self-control capacity increases the likelihood that one will take action (Schmeichel et al., 2010). Therefore, low self-control could facilitate the acquisition of power by promoting prompt action. The competence associated with high self-control and the action-orientation associated with low self-control probably both affect one’s ability to attain social power. Future research is needed to determine if and how self-regulation influences social power.

Conclusion

The diverse effects of power on self-regulation can be explained by integrating research on the information processing effects of power and the limited resource or strength model of self-regulation. Power appears to make people goal-focused and more willing to approach goals. Goals that are consistent with the leadership role, such as high effort and effective performance may therefore be facilitated – but less useful and admirable goals, including self-indulgence and pleasure-seeking, may also be facilitated. Power also seems to promote abstract thinking, which may aid self-regulation by directing people’s attention to high-level, long-term goals. Leadership roles and other positions of power bring requirements for decision-making, which may deplete many resources needed for self-control. Leaders may exert themselves all the more to perform their focal tasks well,
leaving them extra depleted afterward. Although power typically aids one’s performance on focal tasks, in cases like that of the unfortunate Anthony Weiner, power can also lead to lapses in impulse control and ultimately scandal and downfall.

Acknowledgement

Although Diederik Stapel is listed as a co-author on these studies, Joris Lammers confirmed that Stapel did not collect any of the data used in the studies. Therefore, to our knowledge, none of the studies cited in this work are tainted by the data falsification scandal surrounding Stapel’s work.

Short Biographies

Michael R. Ent: Michael R. Ent is currently a graduate student studying social psychology at Florida State University. He received his B.S. in psychology from Shippensburg University of Pennsylvania. His research interests include self-control and free will.

Roy F. Baumeister: Roy F. Baumeister is currently the Eppes Eminent Professor of Psychology and head of the social psychology graduate program at Florida State University. He received his Ph.D. in social psychology from Princeton in 1978 and did a post-doctoral fellowship in sociology at the University of California at Berkeley. He spent over two decades at Case Western Reserve University. He has also worked at the University of Texas, the University of Virginia, the Max-Planck-Institute, the VU Free University of Amsterdam, the University of California at Santa Barbara, and Stanford’s Center for Advanced Study in the Behavioral Sciences. Baumeister’s research spans multiple topics, including self and identity, self-regulation, interpersonal rejection and the need to belong, sexuality and gender, aggression, self-esteem, meaning, and self-presentation. He has received research grants from the National Institutes of Health and from the Templeton Foundation. He has over 470 publications, and his 30 books include Evil: Inside Human Violence and Cruelty, The Cultural Animal, Meanings of Life, and the New York Times best-seller Willpower: Rediscovering the Greatest Human Strength. The Institute for Scientific Information lists him among the handful of most cited (most influential) psychologists in the world. He has received lifetime achievement awards from the Society for Personality and Social Psychology and from the International Society for Self and Identity.

Andrew J. Vonasch: Andrew J. Vonasch is currently a graduate student studying social psychology at Florida State University. He received his B.A. in psychology and economics from Pomona College. His research interests include the evolutionary functions of consciousness, the interaction of self-control systems and implicit goal systems, and embodiment and metaphor-based cognition.

Endnote

* Correspondence address: Florida State University, 1107 Call Street, Tallahassee, FL 32306-4301, USA. Email: baumeister@psy.fsu.edu

References

